Skip to main content
Version: 2.23-unstable

NvidiaTextEmbedder

This component transforms a string into a vector that captures its semantics using NVIDIA-hosted models.

Most common position in a pipelineBefore an embedding Retriever in a query/RAG pipeline
Mandatory init variablesapi_key: API key for the NVIDIA NIM. Can be set with NVIDIA_API_KEY env var.
Mandatory run variablestext: A string
Output variablesembedding: A list of float numbers (vectors)

meta: A dictionary of metadata strings
API referenceNVIDIA
GitHub linkhttps://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/nvidia

Overview

NvidiaTextEmbedder embeds a simple string (such as a query) into a vector.

You can use this component with self-hosted models using NVIDIA NIM or models hosted on the NVIDIA API Catalog.

To embed a list of documents, use NvidiaDocumentEmbedder, which enriches each document with the computed embedding.

Usage

To start using NvidiaTextEmbedder, install the nvidia-haystack package:

shell
pip install nvidia-haystack

You can use NvidiaTextEmbedder with all the embedding models available on the NVIDIA API Catalog or with a model deployed using NVIDIA NIM. For more information, refer to Deploying Text Embedding Models.

On its own

To use models from the NVIDIA API Catalog, you need to specify the api_url and your API key. You can get your API key from the NVIDIA API Catalog.

NvidiaTextEmbedder uses the NVIDIA_API_KEY environment variable by default. Otherwise, you can pass an API key at initialization with the api_key parameter:

python
from haystack.utils.auth import Secret
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder

embedder = NvidiaTextEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="https://integrate.api.nvidia.com/v1",
api_key=Secret.from_token("<your-api-key>"),
)
embedder.warm_up()

result = embedder.run("A transformer is a deep learning architecture")
print(result["embedding"])
print(result["meta"])

To use a locally deployed model, set the api_url to your localhost and set api_key to None:

python
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder

embedder = NvidiaTextEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="http://localhost:9999/v1",
api_key=None,
)
embedder.warm_up()

result = embedder.run("A transformer is a deep learning architecture")
print(result["embedding"])
print(result["meta"])

In a pipeline

The following example shows how to use NvidiaTextEmbedder in a RAG pipeline:

python
from haystack import Pipeline, Document
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.writers import DocumentWriter
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
from haystack.utils.auth import Secret
from haystack_integrations.components.embedders.nvidia import NvidiaTextEmbedder, NvidiaDocumentEmbedder

document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")

documents = [
Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities"),
]

indexing_pipeline = Pipeline()
indexing_pipeline.add_component(
"embedder",
NvidiaDocumentEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="https://integrate.api.nvidia.com/v1",
api_key=Secret.from_token("<your-api-key>"),
),
)
indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))
indexing_pipeline.connect("embedder", "writer")

indexing_pipeline.run({"embedder": {"documents": documents}})

query_pipeline = Pipeline()
query_pipeline.add_component(
"text_embedder",
NvidiaTextEmbedder(
model="nvidia/nv-embedqa-e5-v5",
api_url="https://integrate.api.nvidia.com/v1",
api_key=Secret.from_token("<your-api-key>"),
),
)
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

query = "Who lives in Berlin?"

result = query_pipeline.run({"text_embedder": {"text": query}})

print(result["retriever"]["documents"][0])